Pulse dipolar ESR of doubly labeled mini TAR DNA and its annealing to mini TAR RNA.
نویسندگان
چکیده
Pulse dipolar electron-spin resonance in the form of double electron electron resonance was applied to strategically placed, site-specifically attached pairs of nitroxide spin labels to monitor changes in the mini TAR DNA stem-loop structure brought on by the HIV-1 nucleocapsid protein NCp7. The biophysical structural evidence was at Ångstrom-level resolution under solution conditions not amenable to crystallography or NMR. In the absence of complementary TAR RNA, double labels located in both the upper and the lower stem of mini TAR DNA showed in the presence of NCp7 a broadened distance distribution between the points of attachment, and there was evidence for several conformers. Next, when equimolar amounts of mini TAR DNA and complementary mini TAR RNA were present, NCp7 enhanced the annealing of their stem-loop structures to form duplex DNA-RNA. When duplex TAR DNA-TAR RNA formed, double labels initially located 27.5 Å apart at the 3'- and 5'-termini of the 27-base mini TAR DNA relocated to opposite ends of a 27 bp RNA-DNA duplex with 76.5 Å between labels, a distance which was consistent with the distance between the two labels in a thermally annealed 27-bp TAR DNA-TAR RNA duplex. Different sets of double labels initially located 26-27 Å apart in the mini TAR DNA upper stem, appropriately altered their interlabel distance to ~35 Å when a 27 bp TAR DNA-TAR RNA duplex formed, where the formation was caused either through NCp7-induced annealing or by thermal annealing. In summary, clear structural evidence was obtained for the fraying and destabilization brought on by NCp7 in its biochemical function as an annealing agent and for the detailed structural change from stem-loop to duplex RNA-DNA when complementary RNA was present.
منابع مشابه
The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge.
Electron paramagnetic resonance (EPR) at 236.6 and 9.5 GHz probed the tumbling of nitroxide spin probes in the lower stem, in the upper loop, and near the bulge of mini c TAR DNA. High-frequency 236.6 GHz EPR, not previously applied to spin-labeled oligonucleotides, was notably sensitive to fast, anisotropic, hindered local rotational motion of the spin probe, occurring approximately about the ...
متن کاملStructural and dynamic characterization of the upper part of the HIV-1 cTAR DNA hairpin
First strand transfer is essential for HIV-1 reverse transcription. During this step, the TAR RNA hairpin anneals to the cTAR DNA hairpin; this annealing reaction is promoted by the nucleocapsid protein and involves an initial loop-loop interaction between the apical loops of TAR and cTAR. Using NMR and probing methods, we investigated the structural and dynamic properties of the top half of th...
متن کاملStructural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein
Annealing of the TAR RNA hairpin to the cTAR DNA hairpin is required for the minus-strand transfer step of HIV-1 reverse transcription. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. To gain insight into the mechanism of NC-mediated TAR RNA-DNA annealing, we used structural probes (nucleases and potassium permanganate), gel retardat...
متن کاملSecondary structure and secondary structure dynamics of DNA hairpins complexed with HIV-1 NC protein.
Reverse transcription of the HIV-1 RNA genome involves several complex nucleic acid rearrangement steps that are catalyzed by the HIV-1 nucleocapsid protein (NC), including for example, the annealing of the transactivation response (TAR) region of the viral RNA to the complementary region (TAR DNA) in minus-strand strong-stop DNA. We report herein single-molecule fluorescence resonance energy t...
متن کاملAqueous extracts of cigarette tar containing the tar free radical cause DNA nicks in mammalian cells.
The ability of aqueous extracts of cigarette tar to nick DNA was investigated using viable mammalian cells. Tar extracts contain a radical with a stable electron spin resonance (ESR) signal at g = 2.0036 characteristic of a semiquinone. The association of the tar component that carries the ESR signal with DNA was demonstrated using viable rat alveolar macrophages. The formation of single-strand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 108 4 شماره
صفحات -
تاریخ انتشار 2015